ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.00275
30
6

Revisiting the Critical Factors of Augmentation-Invariant Representation Learning

30 July 2022
Junqiang Huang
Xiangwen Kong
Xiangyu Zhang
ArXivPDFHTML
Abstract

We focus on better understanding the critical factors of augmentation-invariant representation learning. We revisit MoCo v2 and BYOL and try to prove the authenticity of the following assumption: different frameworks bring about representations of different characteristics even with the same pretext task. We establish the first benchmark for fair comparisons between MoCo v2 and BYOL, and observe: (i) sophisticated model configurations enable better adaptation to pre-training dataset; (ii) mismatched optimization strategies of pre-training and fine-tuning hinder model from achieving competitive transfer performances. Given the fair benchmark, we make further investigation and find asymmetry of network structure endows contrastive frameworks to work well under the linear evaluation protocol, while may hurt the transfer performances on long-tailed classification tasks. Moreover, negative samples do not make models more sensible to the choice of data augmentations, nor does the asymmetric network structure. We believe our findings provide useful information for future work.

View on arXiv
Comments on this paper