DRSOM: A Dimension Reduced Second-Order Method and Preliminary Analyses

We introduce a Dimension-Reduced Second-Order Method (DRSOM) for convex and nonconvex unconstrained optimization. Under a trust-region-like framework our method preserves the convergence of the second-order method while using only Hessian-vector products in two directions. Moreover, the computational overhead remains comparable to the first-order such as the gradient descent method. We show that the method has a complexity of to satisfy the first-order and second-order conditions in the subspace. The applicability and performance of DRSOM are exhibited by various computational experiments in logistic regression, minimization, sensor network localization, and neural network training. For neural networks, our preliminary implementation seems to gain computational advantages in terms of training accuracy and iteration complexity over state-of-the-art first-order methods including SGD and ADAM.
View on arXiv