49
1

Domain Adapting Deep Reinforcement Learning for Real-world Speech Emotion Recognition

Abstract

Computers can understand and then engage with people in an emotionally intelligent way thanks to speech-emotion recognition (SER). However, the performance of SER in cross-corpus and real-world live data feed scenarios can be significantly improved. The inability to adapt an existing model to a new domain is one of the shortcomings of SER methods. To address this challenge, researchers have developed domain adaptation techniques that transfer knowledge learnt by a model across the domain. Although existing domain adaptation techniques have improved performances across domains, they can be improved to adapt to a real-world live data feed situation where a model can self-tune while deployed. In this paper, we present a deep reinforcement learning-based strategy (RL-DA) for adapting a pre-trained model to a real-world live data feed setting while interacting with the environment and collecting continual feedback. RL-DA is evaluated on SER tasks, including cross-corpus and cross-language domain adaption schema. Evaluation results show that in a live data feed setting, RL-DA outperforms a baseline strategy by 11% and 14% in cross-corpus and cross-language scenarios, respectively.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.