ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.11934
56
15
v1v2 (latest)

Optimal Boxes: Boosting End-to-End Scene Text Recognition by Adjusting Annotated Bounding Boxes via Reinforcement Learning

25 July 2022
Jingqun Tang
Wenming Qian
Luchuan Song
Xie Dong
Lang Li
Xiang Bai
ArXiv (abs)PDFHTML
Abstract

Text detection and recognition are essential components of a modern OCR system. Most OCR approaches attempt to obtain accurate bounding boxes of text at the detection stage, which is used as the input of the text recognition stage. We observe that when using tight text bounding boxes as input, a text recognizer frequently fails to achieve optimal performance due to the inconsistency between bounding boxes and deep representations of text recognition. In this paper, we propose Box Adjuster, a reinforcement learning-based method for adjusting the shape of each text bounding box to make it more compatible with text recognition models. Additionally, when dealing with cross-domain problems such as synthetic-to-real, the proposed method significantly reduces mismatches in domain distribution between the source and target domains. Experiments demonstrate that the performance of end-to-end text recognition systems can be improved when using the adjusted bounding boxes as the ground truths for training. Specifically, on several benchmark datasets for scene text understanding, the proposed method outperforms state-of-the-art text spotters by an average of 2.0% F-Score on end-to-end text recognition tasks and 4.6% F-Score on domain adaptation tasks.

View on arXiv
Comments on this paper