ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.11872
11
70

FAB: An FPGA-based Accelerator for Bootstrappable Fully Homomorphic Encryption

25 July 2022
R. Agrawal
Leo de Castro
Guowei Yang
C. Juvekar
R. Yazicigil
A. Chandrakasan
Vinod Vaikuntanathan
A. Joshi
    FedML
ArXivPDFHTML
Abstract

FHE offers protection to private data on third-party cloud servers by allowing computations on the data in encrypted form. However, to support general-purpose encrypted computations, all existing FHE schemes require an expensive operation known as bootstrapping. Unfortunately, the computation cost and the memory bandwidth required for bootstrapping add significant overhead to FHE-based computations, limiting the practical use of FHE. In this work, we propose FAB, an FPGA-based accelerator for bootstrappable FHE. Prior FPGA-based FHE accelerators have proposed hardware acceleration of basic FHE primitives for impractical parameter sets without support for bootstrapping. FAB, for the first time ever, accelerates bootstrapping (along with basic FHE primitives) on an FPGA for a secure and practical parameter set. The key contribution of our work is to architect a balanced FAB design, which is not memory bound. To this end, we leverage recent algorithms for bootstrapping while being cognizant of the compute and memory constraints of our FPGA. We use a minimal number of functional units for computing, operate at a low frequency, leverage high data rates to and from main memory, utilize the limited on-chip memory effectively, and perform operation scheduling carefully. For bootstrapping a fully-packed ciphertext, while operating at 300 MHz, FAB outperforms existing state-of-the-art CPU and GPU implementations by 213x and 1.5x respectively. Our target FHE application is training a logistic regression model over encrypted data. For logistic regression model training scaled to 8 FPGAs on the cloud, FAB outperforms a CPU and GPU by 456x and 6.5x and provides competitive performance when compared to the state-of-the-art ASIC design at a fraction of the cost.

View on arXiv
Comments on this paper