Since the inception of Bitcoin in 2009, the market of cryptocurrencies has
grown beyond initial expectations as daily trades exceed 10billion.Asindustriesbecomeautomated,theneedforanautomatedfrauddetectorbecomesveryapparent.Detectinganomaliesinrealtimepreventspotentialaccidentsandeconomiclosses.Anomalydetectioninmultivariatetimeseriesdataposesaparticularchallengebecauseitrequiressimultaneousconsiderationoftemporaldependenciesandrelationshipsbetweenvariables.Identifyingananomalyinrealtimeisnotaneasytaskspecificallybecauseoftheexactanomalisticbehaviortheyobserve.Somepointsmaypresentpointwiseglobalorlocalanomalisticbehavior,whileothersmaybeanomalisticduetotheirfrequencyorseasonalbehaviororduetoachangeinthetrend.InthispaperwesuggestedworkingonrealtimeseriesoftradesofEthereumfromspecificaccountsandsurveyedalargevarietyofdifferentalgorithmstraditionalandnew.Wecategorizedthemaccordingtothestrategyandtheanomalisticbehaviorwhichtheysearchandshowedthatwhenbundlingthemtogethertodifferentgroups,theycanprovetobeagoodreal−timedetectorwithanalarmtimeofnolongerthanafewsecondsandwithveryhighconfidence.