ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.11405
35
3

A New Approach to Drifting Games, Based on Asymptotically Optimal Potentials

23 July 2022
Zhilei Wang
R. Kohn
ArXivPDFHTML
Abstract

We develop a new approach to drifting games, a class of two-person games with many applications to boosting and online learning settings. Our approach involves (a) guessing an asymptotically optimal potential by solving an associated partial differential equation (PDE); then (b) justifying the guess, by proving upper and lower bounds on the final-time loss whose difference scales like a negative power of the number of time steps. The proofs of our potential-based upper bounds are elementary, using little more than Taylor expansion. The proofs of our potential-based lower bounds are also elementary, combining Taylor expansion with probabilistic or combinatorial arguments. Not only is our approach more elementary, but we give new potentials and derive corresponding upper and lower bounds that match each other in the asymptotic regime.

View on arXiv
Comments on this paper