ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.10732
25
21

Explainable AI Algorithms for Vibration Data-based Fault Detection: Use Case-adadpted Methods and Critical Evaluation

21 July 2022
Oliver Mey
Deniz Neufeld
ArXivPDFHTML
Abstract

Analyzing vibration data using deep neural network algorithms is an effective way to detect damages in rotating machinery at an early stage. However, the black-box approach of these methods often does not provide a satisfactory solution because the cause of classifications is not comprehensible to humans. Therefore, this work investigates the application of explainable AI (XAI) algorithms to convolutional neural networks for vibration-based condition monitoring. For this, various XAI algorithms are applied to classifications based on the Fourier transform as well as the order analysis of the vibration signal. The results are visualized as a function of the revolutions per minute (RPM), in the shape of frequency-RPM maps and order-RPM maps. This allows to assess the saliency given to features which depend on the rotation speed and those with constant frequency. To compare the explanatory power of the XAI methods, investigations are first carried out with a synthetic data set with known class-specific characteristics. Then a real-world data set for vibration-based imbalance classification on an electric motor, which runs at a broad range of rotation speeds, is used. A special focus is put on the consistency for variable periodicity of the data, which translates to a varying rotation speed of a real-world machine. This work aims to show the different strengths and weaknesses of the methods for this use case: GradCAM, LRP and LIME with a new perturbation strategy.

View on arXiv
Comments on this paper