Forecast reconciliation is an important research topic. Yet, there is currently neither formal framework nor practical method for the probabilistic reconciliation of count time series. In this paper we propose a definition of coherency and reconciled probabilistic forecast which applies to both real-valued and count variables and a novel method for probabilistic reconciliation. It is based on a generalization of Bayes' rule and it can reconcile both real-value and count variables. When applied to count variables, it yields a reconciled probability mass function. Our experiments with the temporal reconciliation of count variables show a major forecast improvement compared to the probabilistic Gaussian reconciliation.
View on arXiv