ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.08466
20
8

What does Transformer learn about source code?

18 July 2022
Kechi Zhang
Ge Li
Zhi Jin
    ViT
ArXivPDFHTML
Abstract

In the field of source code processing, the transformer-based representation models have shown great powerfulness and have achieved state-of-the-art (SOTA) performance in many tasks. Although the transformer models process the sequential source code, pieces of evidence show that they may capture the structural information (\eg, in the syntax tree, data flow, control flow, \etc) as well. We propose the aggregated attention score, a method to investigate the structural information learned by the transformer. We also put forward the aggregated attention graph, a new way to extract program graphs from the pre-trained models automatically. We measure our methods from multiple perspectives. Furthermore, based on our empirical findings, we use the automatically extracted graphs to replace those ingenious manual designed graphs in the Variable Misuse task. Experimental results show that the semantic graphs we extracted automatically are greatly meaningful and effective, which provide a new perspective for us to understand and use the information contained in the model.

View on arXiv
Comments on this paper