Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.08089
Cited By
Threat Model-Agnostic Adversarial Defense using Diffusion Models
17 July 2022
Tsachi Blau
Roy Ganz
Bahjat Kawar
Alex M. Bronstein
Michael Elad
AAML
DiffM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Threat Model-Agnostic Adversarial Defense using Diffusion Models"
38 / 38 papers shown
Title
Evaluating the Adversarial Robustness of Adaptive Test-time Defenses
Francesco Croce
Sven Gowal
T. Brunner
Evan Shelhamer
Matthias Hein
A. Cemgil
TTA
AAML
206
69
0
28 Feb 2022
Denoising Diffusion Restoration Models
Bahjat Kawar
Michael Elad
Stefano Ermon
Jiaming Song
DiffM
260
823
0
27 Jan 2022
Unsolved Problems in ML Safety
Dan Hendrycks
Nicholas Carlini
John Schulman
Jacob Steinhardt
236
286
0
28 Sep 2021
BIGRoC: Boosting Image Generation via a Robust Classifier
Roy Ganz
Michael Elad
42
10
0
08 Aug 2021
SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations
Chenlin Meng
Yutong He
Yang Song
Jiaming Song
Jiajun Wu
Jun-Yan Zhu
Stefano Ermon
DiffM
130
1,484
0
02 Aug 2021
The Dimpled Manifold Model of Adversarial Examples in Machine Learning
A. Shamir
Odelia Melamed
Oriel BenShmuel
AAML
46
50
0
18 Jun 2021
Adversarial purification with Score-based generative models
Jongmin Yoon
Sung Ju Hwang
Juho Lee
DiffM
76
156
0
11 Jun 2021
SNIPS: Solving Noisy Inverse Problems Stochastically
Bahjat Kawar
Gregory Vaksman
Michael Elad
69
194
0
31 May 2021
High Perceptual Quality Image Denoising with a Posterior Sampling CGAN
Guy Ohayon
Theo Adrai
Gregory Vaksman
Michael Elad
P. Milanfar
GAN
97
37
0
06 Mar 2021
Improved Denoising Diffusion Probabilistic Models
Alex Nichol
Prafulla Dhariwal
DiffM
289
3,648
0
18 Feb 2021
Recent Advances in Adversarial Training for Adversarial Robustness
Tao Bai
Jinqi Luo
Jun Zhao
Bihan Wen
Qian Wang
AAML
115
489
0
02 Feb 2021
Stochastic Image Denoising by Sampling from the Posterior Distribution
Bahjat Kawar
Gregory Vaksman
Michael Elad
DiffM
60
63
0
23 Jan 2021
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
47
331
0
07 Oct 2020
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
213
7,294
0
06 Oct 2020
Solving Linear Inverse Problems Using the Prior Implicit in a Denoiser
Zahra Kadkhodaie
Eero P. Simoncelli
77
85
0
27 Jul 2020
Perceptual Adversarial Robustness: Defense Against Unseen Threat Models
Cassidy Laidlaw
Sahil Singla
Soheil Feizi
AAML
OOD
77
187
0
22 Jun 2020
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
495
17,888
0
19 Jun 2020
Stochastic Security: Adversarial Defense Using Long-Run Dynamics of Energy-Based Models
Mitch Hill
Jonathan Mitchell
Song-Chun Zhu
AAML
53
70
0
27 May 2020
On Adaptive Attacks to Adversarial Example Defenses
Florian Tramèr
Nicholas Carlini
Wieland Brendel
Aleksander Madry
AAML
242
831
0
19 Feb 2020
Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One
Will Grathwohl
Kuan-Chieh Wang
J. Jacobsen
David Duvenaud
Mohammad Norouzi
Kevin Swersky
VLM
76
542
0
06 Dec 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
213
3,870
0
12 Jul 2019
ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation
Yuzhe Yang
Guo Zhang
Dina Katabi
Zhi Xu
AAML
85
170
0
28 May 2019
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OOD
VLM
152
3,423
0
28 Mar 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
130
2,028
0
08 Feb 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
127
2,542
0
24 Jan 2019
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
93
1,776
0
30 May 2018
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
Pouya Samangouei
Maya Kabkab
Rama Chellappa
AAML
GAN
82
1,176
0
17 May 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
191
3,180
0
01 Feb 2018
Mitigating Adversarial Effects Through Randomization
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Zhou Ren
Alan Yuille
AAML
99
1,054
0
06 Nov 2017
PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples
Yang Song
Taesup Kim
Sebastian Nowozin
Stefano Ermon
Nate Kushman
AAML
110
790
0
30 Oct 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
273
12,029
0
19 Jun 2017
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
Weilin Xu
David Evans
Yanjun Qi
AAML
69
1,260
0
04 Apr 2017
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
461
3,138
0
04 Nov 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
233
8,548
0
16 Aug 2016
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
316
7,971
0
23 May 2016
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
255
6,887
0
12 Mar 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
237
19,017
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
243
14,893
1
21 Dec 2013
1