ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.06168
13
6

MRF-UNets: Searching UNet with Markov Random Fields

13 July 2022
Zifu Wang
Matthew B. Blaschko
ArXivPDFHTML
Abstract

UNet [27] is widely used in semantic segmentation due to its simplicity and effectiveness. However, its manually-designed architecture is applied to a large number of problem settings, either with no architecture optimizations, or with manual tuning, which is time consuming and can be sub-optimal. In this work, firstly, we propose Markov Random Field Neural Architecture Search (MRF-NAS) that extends and improves the recent Adaptive and Optimal Network Width Search (AOWS) method [4] with (i) a more general MRF framework (ii) diverse M-best loopy inference (iii) differentiable parameter learning. This provides the necessary NAS framework to efficiently explore network architectures that induce loopy inference graphs, including loops that arise from skip connections. With UNet as the backbone, we find an architecture, MRF-UNet, that shows several interesting characteristics. Secondly, through the lens of these characteristics, we identify the sub-optimality of the original UNet architecture and further improve our results with MRF-UNetV2. Experiments show that our MRF-UNets significantly outperform several benchmarks on three aerial image datasets and two medical image datasets while maintaining low computational costs. The code is available at: https://github.com/zifuwanggg/MRF-UNets.

View on arXiv
Comments on this paper