15
17

The d-separation criterion in Categorical Probability

Abstract

The d-separation criterion detects the compatibility of a joint probability distribution with a directed acyclic graph through certain conditional independences. In this work, we study this problem in the context of categorical probability theory by introducing a categorical definition of causal models, a categorical notion of d-separation, and proving an abstract version of the d-separation criterion. This approach has two main benefits. First, categorical d-separation is a very intuitive criterion based on topological connectedness. Second, our results apply both to measure-theoretic probability (with standard Borel spaces) and beyond probability theory, including to deterministic and possibilistic networks. It therefore provides a clean proof of the equivalence of local and global Markov properties with causal compatibility for continuous and mixed random variables as well as deterministic and possibilistic variables.

View on arXiv
Comments on this paper