ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.04818
91
72

Cross-modal Prototype Driven Network for Radiology Report Generation

11 July 2022
Jun Wang
A. Bhalerao
Yulan He
    MedIm
ArXivPDFHTML
Abstract

Radiology report generation (RRG) aims to describe automatically a radiology image with human-like language and could potentially support the work of radiologists, reducing the burden of manual reporting. Previous approaches often adopt an encoder-decoder architecture and focus on single-modal feature learning, while few studies explore cross-modal feature interaction. Here we propose a Cross-modal PROtotype driven NETwork (XPRONET) to promote cross-modal pattern learning and exploit it to improve the task of radiology report generation. This is achieved by three well-designed, fully differentiable and complementary modules: a shared cross-modal prototype matrix to record the cross-modal prototypes; a cross-modal prototype network to learn the cross-modal prototypes and embed the cross-modal information into the visual and textual features; and an improved multi-label contrastive loss to enable and enhance multi-label prototype learning. XPRONET obtains substantial improvements on the IU-Xray and MIMIC-CXR benchmarks, where its performance exceeds recent state-of-the-art approaches by a large margin on IU-Xray and comparable performance on MIMIC-CXR.

View on arXiv
Comments on this paper