ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.03952
30
9

Learning with Muscles: Benefits for Data-Efficiency and Robustness in Anthropomorphic Tasks

8 July 2022
Isabell Wochner
Pierre Schumacher
Georg Martius
Le Chen
Syn Schmitt
Daniel Haeufle
ArXivPDFHTML
Abstract

Humans are able to outperform robots in terms of robustness, versatility, and learning of new tasks in a wide variety of movements. We hypothesize that highly nonlinear muscle dynamics play a large role in providing inherent stability, which is favorable to learning. While recent advances have been made in applying modern learning techniques to muscle-actuated systems both in simulation as well as in robotics, so far, no detailed analysis has been performed to show the benefits of muscles when learning from scratch. Our study closes this gap and showcases the potential of muscle actuators for core robotics challenges in terms of data-efficiency, hyperparameter sensitivity, and robustness.

View on arXiv
Comments on this paper