51
22

Distance-Based Sound Separation

Abstract

We propose the novel task of distance-based sound separation, where sounds are separated based only on their distance from a single microphone. In the context of assisted listening devices, proximity provides a simple criterion for sound selection in noisy environments that would allow the user to focus on sounds relevant to a local conversation. We demonstrate the feasibility of this approach by training a neural network to separate near sounds from far sounds in single channel synthetic reverberant mixtures, relative to a threshold distance defining the boundary between near and far. With a single nearby speaker and four distant speakers, the model improves scale-invariant signal to noise ratio by 4.4 dB for near sounds and 6.8 dB for far sounds.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.