ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.00426
46
6
v1v2 (latest)

Parallel square-root statistical linear regression for inference in nonlinear state space models

29 June 2022
F. Yaghoobi
Adrien Corenflos
Sakira Hassan
Simo Särkkä
ArXiv (abs)PDFHTML
Abstract

In this article, we introduce parallel-in-time methods for state and parameter estimation in general nonlinear non-Gaussian state-space models using the statistical linear regression and the iterated statistical posterior linearization paradigms. We also reformulate the proposed methods in a square-root form, resulting in improved numerical stability while preserving the parallelization capabilities. We then leverage the fixed-point structure of our methods to perform likelihood-based parameter estimation in logarithmic time with respect to the number of observations. Finally, we demonstrate the practical performance of the methodology with numerical experiments run on a graphics processing unit (GPU).

View on arXiv
Comments on this paper