ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.15423
16
16

Implicit Neural Spatial Filtering for Multichannel Source Separation in the Waveform Domain

30 June 2022
Dejan Marković
Alexandre Défossez
Alexander Richard
ArXivPDFHTML
Abstract

We present a single-stage casual waveform-to-waveform multichannel model that can separate moving sound sources based on their broad spatial locations in a dynamic acoustic scene. We divide the scene into two spatial regions containing, respectively, the target and the interfering sound sources. The model is trained end-to-end and performs spatial processing implicitly, without any components based on traditional processing or use of hand-crafted spatial features. We evaluate the proposed model on a real-world dataset and show that the model matches the performance of an oracle beamformer followed by a state-of-the-art single-channel enhancement network.

View on arXiv
Comments on this paper