ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.14272
27
0

Collecting high-quality adversarial data for machine reading comprehension tasks with humans and models in the loop

28 June 2022
Damian Y. Romero Diaz
M. Aniol
John M. Culnan
ArXivPDFHTML
Abstract

We present our experience as annotators in the creation of high-quality, adversarial machine-reading-comprehension data for extractive QA for Task 1 of the First Workshop on Dynamic Adversarial Data Collection (DADC). DADC is an emergent data collection paradigm with both models and humans in the loop. We set up a quasi-experimental annotation design and perform quantitative analyses across groups with different numbers of annotators focusing on successful adversarial attacks, cost analysis, and annotator confidence correlation. We further perform a qualitative analysis of our perceived difficulty of the task given the different topics of the passages in our dataset and conclude with recommendations and suggestions that might be of value to people working on future DADC tasks and related annotation interfaces.

View on arXiv
Comments on this paper