ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.12261
21
3

Unsupervised Sentence Simplification via Dependency Parsing

10 June 2022
Vy Vo
Weiqing Wang
Wray L. Buntine
ArXivPDFHTML
Abstract

Text simplification is the task of rewriting a text so that it is readable and easily understood. In this paper, we propose a simple yet novel unsupervised sentence simplification system that harnesses parsing structures together with sentence embeddings to produce linguistically effective simplifications. This means our model is capable of introducing substantial modifications to simplify a sentence while maintaining its original semantics and adequate fluency. We establish the unsupervised state-of-the-art at 39.13 SARI on TurkCorpus set and perform competitively against supervised baselines on various quality metrics. Furthermore, we demonstrate our framework's extensibility to other languages via a proof-of-concept on Vietnamese data. Code for reproduction is published at \url{https://github.com/isVy08/USDP}.

View on arXiv
Comments on this paper