ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.11066
17
4

Radio2Speech: High Quality Speech Recovery from Radio Frequency Signals

22 June 2022
Running Zhao
Jiang-Tao Luca Yu
Tingle Li
Hang Zhao
Edith C.H. Ngai
ArXivPDFHTML
Abstract

Considering the microphone is easily affected by noise and soundproof materials, the radio frequency (RF) signal is a promising candidate to recover audio as it is immune to noise and can traverse many soundproof objects. In this paper, we introduce Radio2Speech, a system that uses RF signals to recover high quality speech from the loudspeaker. Radio2Speech can recover speech comparable to the quality of the microphone, advancing from recovering only single tone music or incomprehensible speech in existing approaches. We use Radio UNet to accurately recover speech in time-frequency domain from RF signals with limited frequency band. Also, we incorporate the neural vocoder to synthesize the speech waveform from the estimated time-frequency representation without using the contaminated phase. Quantitative and qualitative evaluations show that in quiet, noisy and soundproof scenarios, Radio2Speech achieves state-of-the-art performance and is on par with the microphone that works in quiet scenarios.

View on arXiv
Comments on this paper