ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.10809
15
0

SSMI: How to Make Objects of Interest Disappear without Accessing Object Detectors?

22 June 2022
Hui Xia
Rui Zhang
Zizi Kang
Shuliang Jiang
    AAML
ArXivPDFHTML
Abstract

Most black-box adversarial attack schemes for object detectors mainly face two shortcomings: requiring access to the target model and generating inefficient adversarial examples (failing to make objects disappear in large numbers). To overcome these shortcomings, we propose a black-box adversarial attack scheme based on semantic segmentation and model inversion (SSMI). We first locate the position of the target object using semantic segmentation techniques. Next, we design a neighborhood background pixel replacement to replace the target region pixels with background pixels to ensure that the pixel modifications are not easily detected by human vision. Finally, we reconstruct a machine-recognizable example and use the mask matrix to select pixels in the reconstructed example to modify the benign image to generate an adversarial example. Detailed experimental results show that SSMI can generate efficient adversarial examples to evade human-eye perception and make objects of interest disappear. And more importantly, SSMI outperforms existing same kinds of attacks. The maximum increase in new and disappearing labels is 16%, and the maximum decrease in mAP metrics for object detection is 36%.

View on arXiv
Comments on this paper