ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.09477
17
1

Geometric Matrix Completion via Sylvester Multi-Graph Neural Network

19 June 2022
Boxin Du
Changhe Yuan
Fei-Yue Wang
Hanghang Tong
ArXivPDFHTML
Abstract

Despite the success of the Sylvester equation empowered methods on various graph mining applications, such as semi-supervised label learning and network alignment, there also exists several limitations. The Sylvester equation's inability of modeling non-linear relations and the inflexibility of tuning towards different tasks restrict its performance. In this paper, we propose an end-to-end neural framework, SYMGNN, which consists of a multi-network neural aggregation module and a prior multi-network association incorporation learning module. The proposed framework inherits the key ideas of the Sylvester equation, and meanwhile generalizes it to overcome aforementioned limitations. Empirical evaluations on real-world datasets show that the instantiations of SYMGNN overall outperform the baselines in geometric matrix completion task, and its low-rank instantiation could further reduce the memory consumption by 16.98\% on average.

View on arXiv
Comments on this paper