ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.03815
32
22
v1v2v3 (latest)

Bayesian Predictive Decision Synthesis

8 June 2022
Emily Tallman
M. West
ArXiv (abs)PDFHTML
Abstract

Decision-guided perspectives on model uncertainty expand traditional statistical thinking about managing, comparing and combining inferences from sets of models. Bayesian predictive decision synthesis (BPDS) advances conceptual and theoretical foundations, and defines new methodology that explicitly integrates decision-analytic outcomes into the evaluation, comparison and potential combination of candidate models. BPDS extends recent theoretical and practical advances based on both Bayesian predictive synthesis and empirical goal-focused model uncertainty analysis. This is enabled by development of a novel subjective Bayesian perspective on model weighting in predictive decision settings. Illustrations come from applied contexts including optimal design for regression prediction and sequential time series forecasting for financial portfolio decisions.

View on arXiv
Comments on this paper