ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.02911
21
0

Inverse Boundary Value and Optimal Control Problems on Graphs: A Neural and Numerical Synthesis

6 June 2022
Mehdi Garrousian
Amirhossein Nouranizadeh
ArXivPDFHTML
Abstract

A general setup for deterministic system identification problems on graphs with Dirichlet and Neumann boundary conditions is introduced. When control nodes are available along the boundary, we apply a discretize-then-optimize method to estimate an optimal control. A key piece in the present architecture is our boundary injected message passing neural network. This will produce more accurate predictions that are considerably more stable in proximity of the boundary. Also, a regularization technique based on graphical distance is introduced that helps with stabilizing the predictions at nodes far from the boundary.

View on arXiv
Comments on this paper