ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.02892
20
1

Discriminative Models Can Still Outperform Generative Models in Aspect Based Sentiment Analysis

6 June 2022
Dhruv Mullick
Alona Fyshe
Bilal Ghanem
ArXivPDFHTML
Abstract

Aspect-based Sentiment Analysis (ABSA) helps to explain customers' opinions towards products and services. In the past, ABSA models were discriminative, but more recently generative models have been used to generate aspects and polarities directly from text. In contrast, discriminative models commonly first select aspects from the text, and then classify the aspect's polarity. Previous results showed that generative models outperform discriminative models on several English ABSA datasets. Here, we evaluate and contrast two state-of-the-art discriminative and generative models in several settings: cross-lingual, cross-domain, and cross-lingual and domain, to understand generalizability in settings other than English mono-lingual in-domain. Our more thorough evaluation shows that, contrary to previous studies, discriminative models can still outperform generative models in almost all settings.

View on arXiv
Comments on this paper