44
5
v1v2 (latest)

Improved Deterministic Connectivity in Massively Parallel Computation

Abstract

A long line of research about connectivity in the Massively Parallel Computation model has culminated in the seminal works of Andoni et al. [FOCS'18] and Behnezhad et al. [FOCS'19]. They provide a randomized algorithm for low-space MPC with conjectured to be optimal round complexity O(logD+loglogmnn)O(\log D + \log \log_{\frac m n} n) and O(m)O(m) space, for graphs on nn vertices with mm edges and diameter DD. Surprisingly, a recent result of Coy and Czumaj [STOC'22] shows how to achieve the same deterministically. Unfortunately, however, their algorithm suffers from large local computation time. We present a deterministic connectivity algorithm that matches all the parameters of the randomized algorithm and, in addition, significantly reduces the local computation time to nearly linear. Our derandomization method is based on reducing the amount of randomness needed to allow for a simpler efficient search. While similar randomness reduction approaches have been used before, our result is not only strikingly simpler, but it is the first to have efficient local computation. This is why we believe it to serve as a starting point for the systematic development of computation-efficient derandomization approaches in low-memory MPC.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.