ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.01459
6
0

Kernel Angle Dependence Measures for Complex Objects

3 June 2022
Yilin Zhang
Songshan Yang
ArXivPDFHTML
Abstract

Measuring and testing dependence between complex objects is of great importance in modern statistics. Most existing work relied on the distance between random variables, which inevitably required the moment conditions to guarantee the distance is well-defined. Based on the geometry element ``angle", we develop a novel class of nonlinear dependence measures for data in metric space that can avoid such conditions. Specifically, by making use of the reproducing kernel Hilbert space equipped with Gaussian measure, we introduce kernel angle covariances that can be applied to complex objects such as random vectors or matrices. We estimate kernel angle covariances based on UUU-statistic and establish the corresponding independence tests via gamma approximation. Our kernel angle independence tests, imposing no-moment conditions on kernels, are robust with heavy-tailed random variables. We conduct comprehensive simulation studies and apply our proposed methods to a facial recognition task. Our kernel angle covariances-based tests show remarkable performances in dealing with image data.

View on arXiv
Comments on this paper