ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.01094
22
5

A DTCWT-SVD Based Video Watermarking resistant to frame rate conversion

2 June 2022
Yifei Wang
Qichao Ying
Zhenxing Qian
Sheng Li
Xinpeng Zhang
ArXivPDFHTML
Abstract

Videos can be easily tampered, copied and redistributed by attackers for illegal and monetary usage. Such behaviors severely jeopardize the interest of content owners. Despite huge efforts made in digital video watermarking for copyright protection, typical distortions in video transmission including signal attacks, geometric attacks and temporal synchronization attacks can still easily erase the embedded signal. Among them, temporal synchronization attacks which include frame dropping, frame insertion and frame rate conversion is one of the most prevalent attacks. To address this issue, we present a new video watermarking based on joint Dual-Tree Cosine Wavelet Transformation (DTCWT) and Singular Value Decomposition (SVD), which is resistant to frame rate conversion. We first extract a set of candidate coefficient by applying SVD decomposition after DTCWT transform. Then, we simulate the watermark embedding by adjusting the shape of candidate coefficient. Finally, we perform group-level watermarking that includes moderate temporal redundancy to resist temporal desynchronization attacks. Extensive experimental results show that the proposed scheme is more resilient to temporal desynchronization attacks and performs better than the existing blind video watermarking schemes.

View on arXiv
Comments on this paper