90
0

On the Perils of Cascading Robust Classifiers

Abstract

Ensembling certifiably robust neural networks has been shown to be a promising approach for improving the \emph{certified robust accuracy} of neural models. Black-box ensembles that assume only query-access to the constituent models (and their robustness certifiers) during prediction are particularly attractive due to their modular structure. Cascading ensembles are a popular instance of black-box ensembles that appear to improve certified robust accuracies in practice. However, we find that the robustness certifier used by a cascading ensemble is unsound. That is, when a cascading ensemble is certified as locally robust at an input xx, there can, in fact, be inputs xx' in the ϵ\epsilon-ball centered at xx, such that the cascade's prediction at xx' is different from xx. We present an alternate black-box ensembling mechanism based on weighted voting which we prove to be sound for robustness certification. Via a thought experiment, we demonstrate that if the constituent classifiers are suitably diverse, voting ensembles can improve certified performance. Our code is available at \url{https://github.com/TristaChi/ensembleKW}.

View on arXiv
Comments on this paper