ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.15694
9
10

Data-driven Reference Trajectory Optimization for Precision Motion Systems

31 May 2022
S. Balula
Dominic Liao-McPherson
Alisa Rupenyan
John Lygeros
ArXivPDFHTML
Abstract

We propose a data-driven optimization-based pre-compensation method to improve the contour tracking performance of precision motion stages by modifying the reference trajectory and without modifying any built-in low-level controllers. The position of the precision motion stage is predicted with data-driven models, a linear low-fidelity model is used to optimize traversal time, by changing the path velocity and acceleration profiles then a non-linear high-fidelity model is used to refine the previously found time-optimal solution. We experimentally demonstrate that the proposed method is capable of simultaneously improving the productivity and accuracy of a high precision motion stage. Given the data-based nature of the models, the proposed method can easily be adapted to a wide family of precision motion systems.

View on arXiv
Comments on this paper