ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.15503
44
4

Leveraging Pre-Trained Language Models to Streamline Natural Language Interaction for Self-Tracking

31 May 2022
Young-Ho Kim
Sungdong Kim
Minsuk Chang
Sang-Woo Lee
ArXivPDFHTML
Abstract

Current natural language interaction for self-tracking tools largely depends on bespoke implementation optimized for a specific tracking theme and data format, which is neither generalizable nor scalable to a tremendous design space of self-tracking. However, training machine learning models in the context of self-tracking is challenging due to the wide variety of tracking topics and data formats. In this paper, we propose a novel NLP task for self-tracking that extracts close- and open-ended information from a retrospective activity log described as a plain text, and a domain-agnostic, GPT-3-based NLU framework that performs this task. The framework augments the prompt using synthetic samples to transform the task into 10-shot learning, to address a cold-start problem in bootstrapping a new tracking topic. Our preliminary evaluation suggests that our approach significantly outperforms the baseline QA models. Going further, we discuss future application domains toward which the NLP and HCI researchers can collaborate.

View on arXiv
Comments on this paper