46
2

Holistic Generalized Linear Models

Abstract

Holistic linear regression extends the classical best subset selection problem by adding additional constraints designed to improve the model quality. These constraints include sparsity-inducing constraints, sign-coherence constraints and linear constraints. The R\textsf{R} package holiglm\texttt{holiglm} provides functionality to model and fit holistic generalized linear models. By making use of state-of-the-art conic mixed-integer solvers, the package can reliably solve GLMs for Gaussian, binomial and Poisson responses with a multitude of holistic constraints. The high-level interface simplifies the constraint specification and can be used as a drop-in replacement for the stats::glm()\texttt{stats::glm()} function.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.