ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.15127
21
3

Universal Deep GNNs: Rethinking Residual Connection in GNNs from a Path Decomposition Perspective for Preventing the Over-smoothing

30 May 2022
Jie Chen
Weiqi Liu
Zhizhong Huang
Junbin Gao
Junping Zhang
Jian Pu
ArXivPDFHTML
Abstract

The performance of GNNs degrades as they become deeper due to the over-smoothing. Among all the attempts to prevent over-smoothing, residual connection is one of the promising methods due to its simplicity. However, recent studies have shown that GNNs with residual connections only slightly slow down the degeneration. The reason why residual connections fail in GNNs is still unknown. In this paper, we investigate the forward and backward behavior of GNNs with residual connections from a novel path decomposition perspective. We find that the recursive aggregation of the median length paths from the binomial distribution of residual connection paths dominates output representation, resulting in over-smoothing as GNNs go deeper. Entangled propagation and weight matrices cause gradient smoothing and prevent GNNs with residual connections from optimizing to the identity mapping. Based on these findings, we present a Universal Deep GNNs (UDGNN) framework with cold-start adaptive residual connections (DRIVE) and feedforward modules. Extensive experiments demonstrate the effectiveness of our method, which achieves state-of-the-art results over non-smooth heterophily datasets by simply stacking standard GNNs.

View on arXiv
Comments on this paper