45
0

Approximate Conditional Coverage via Neural Model Approximations

Abstract

We propose a new approach for constructing prediction sets for Transformer networks via the strong signals for prediction reliability from KNN-based approximations. This enables a data-driven partitioning of the high-dimensional feature space and a new Inductive Venn Predictor for calibration, the Venn-ADMIT Predictor. Our approach more closely obtains approximate conditional coverage than recent work proposing adaptive and localized conformal score functions for deep networks. We analyze coverage on several representative natural language processing classification tasks, including class-imbalanced and distribution-shifted settings.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.