Approximate Conditional Coverage via Neural Model Approximations
- UQCV

We propose a new approach for constructing prediction sets for Transformer networks via the strong signals for prediction reliability from KNN-based approximations. This enables a data-driven partitioning of the high-dimensional feature space and a new Inductive Venn Predictor for calibration, the Venn-ADMIT Predictor. Our approach more closely obtains approximate conditional coverage than recent work proposing adaptive and localized conformal score functions for deep networks. We analyze coverage on several representative natural language processing classification tasks, including class-imbalanced and distribution-shifted settings.
View on arXiv