ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.12869
23
12

Over-the-Air Federated Learning with Energy Harvesting Devices

25 May 2022
Ozan Aygün
M. Kazemi
Deniz Gündüz
T. Duman
    FedML
ArXivPDFHTML
Abstract

We consider federated edge learning (FEEL) among mobile devices that harvest the required energy from their surroundings, and share their updates with the parameter server (PS) through a shared wireless channel. In particular, we consider energy harvesting FL with over-the-air (OTA) aggregation, where the participating devices perform local computations and wireless transmission only when they have the required energy available, and transmit the local updates simultaneously over the same channel bandwidth. In order to prevent bias among heterogeneous devices, we utilize a weighted averaging with respect to their latest energy arrivals and data cardinalities. We provide a convergence analysis and carry out numerical experiments with different energy arrival profiles, which show that even though the proposed scheme is robust against devices with heterogeneous energy arrivals in error-free scenarios, we observe a 5-10% performance loss in energy harvesting OTA FL.

View on arXiv
Comments on this paper