ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.12718
32
2

DPSNN: A Differentially Private Spiking Neural Network with Temporal Enhanced Pooling

24 May 2022
Jihang Wang
Dongcheng Zhao
Guobin Shen
Qian Zhang
Yingda Zeng
ArXivPDFHTML
Abstract

Privacy protection is a crucial issue in machine learning algorithms, and the current privacy protection is combined with traditional artificial neural networks based on real values. Spiking neural network (SNN), the new generation of artificial neural networks, plays a crucial role in many fields. Therefore, research on the privacy protection of SNN is urgently needed. This paper combines the differential privacy(DP) algorithm with SNN and proposes a differentially private spiking neural network (DPSNN). The SNN uses discrete spike sequences to transmit information, combined with the gradient noise introduced by DP so that SNN maintains strong privacy protection. At the same time, to make SNN maintain high performance while obtaining high privacy protection, we propose the temporal enhanced pooling (TEP) method. It fully integrates the temporal information of SNN into the spatial information transfer, which enables SNN to perform better information transfer. We conduct experiments on static and neuromorphic datasets, and the experimental results show that our algorithm still maintains high performance while providing strong privacy protection.

View on arXiv
Comments on this paper