ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.12331
33
35

Certified Robustness Against Natural Language Attacks by Causal Intervention

24 May 2022
Haiteng Zhao
Chang Ma
Xinshuai Dong
A. Luu
Zhi-Hong Deng
Hanwang Zhang
    AAML
ArXivPDFHTML
Abstract

Deep learning models have achieved great success in many fields, yet they are vulnerable to adversarial examples. This paper follows a causal perspective to look into the adversarial vulnerability and proposes Causal Intervention by Semantic Smoothing (CISS), a novel framework towards robustness against natural language attacks. Instead of merely fitting observational data, CISS learns causal effects p(y|do(x)) by smoothing in the latent semantic space to make robust predictions, which scales to deep architectures and avoids tedious construction of noise customized for specific attacks. CISS is provably robust against word substitution attacks, as well as empirically robust even when perturbations are strengthened by unknown attack algorithms. For example, on YELP, CISS surpasses the runner-up by 6.7% in terms of certified robustness against word substitutions, and achieves 79.4% empirical robustness when syntactic attacks are integrated.

View on arXiv
Comments on this paper