ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.11758
121
31
v1v2 (latest)

Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of Multilingual Language Models

24 May 2022
Terra Blevins
Hila Gonen
Luke Zettlemoyer
    LRM
ArXiv (abs)PDFHTML
Abstract

The emergent cross-lingual transfer seen in multilingual pretrained models has sparked significant interest in studying their behavior. However, because these analyses have focused on fully trained multilingual models, little is known about the dynamics of the multilingual pretraining process. We investigate when these models acquire their in-language and cross-lingual abilities by probing checkpoints taken from throughout XLM-R pretraining, using a suite of linguistic tasks. Our analysis shows that the model achieves high in-language performance early on, with lower-level linguistic skills acquired before more complex ones. In contrast, when the model learns to transfer cross-lingually depends on the language pair. Interestingly, we also observe that, across many languages and tasks, the final, converged model checkpoint exhibits significant performance degradation and that no one checkpoint performs best on all languages. Taken together with our other findings, these insights highlight the complexity and interconnectedness of multilingual pretraining.

View on arXiv
Comments on this paper