ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.11428
33
9

Spreading Factor assisted LoRa Localization with Deep Reinforcement Learning

23 May 2022
Yaya Etiabi
Mohammed Jouhari
A. Burg
El-Mehdi Amhoud
ArXivPDFHTML
Abstract

Most of the developed localization solutions rely on RSSI fingerprinting. However, in the LoRa networks, due to the spreading factor (SF) in the network setting, traditional fingerprinting may lack representativeness of the radio map, leading to inaccurate position estimates. As such, in this work, we propose a novel LoRa RSSI fingerprinting approach that takes into account the SF. The performance evaluation shows the prominence of our proposed approach since we achieved an improvement in localization accuracy by up to 6.67% compared to the state-of-the-art methods. The evaluation has been done using a fully connected deep neural network (DNN) set as the baseline. To further improve the localization accuracy, we propose a deep reinforcement learning model that captures the ever-growing complexity of LoRa networks and copes with their scalability. The obtained results show an improvement of 48.10% in the localization accuracy compared to the baseline DNN model.

View on arXiv
Comments on this paper