ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.11412
60
10
v1v2 (latest)

Instance-Based Uncertainty Estimation for Gradient-Boosted Regression Trees

23 May 2022
Jonathan Brophy
Daniel Lowd
ArXiv (abs)PDFHTMLGithub (31★)
Abstract

We propose Instance-Based Uncertainty estimation for Gradient-boosted regression trees~(IBUG), a simple method for extending any GBRT point predictor to produce probabilistic predictions. IBUG computes a non-parametric distribution around a prediction using the k-nearest training instances, where distance is measured with a tree-ensemble kernel. The runtime of IBUG depends on the number of training examples at each leaf in the ensemble, and can be improved by sampling trees or training instances. Empirically, we find that IBUG achieves similar or better performance than the previous state-of-the-art across 22 benchmark regression datasets. We also find that IBUG can achieve improved probabilistic performance by using different base GBRT models, and can more flexibly model the posterior distribution of a prediction than competing methods. We also find that previous methods suffer from poor probabilistic calibration on some datasets, which can be mitigated using a scalar factor tuned on the validation data.

View on arXiv
Comments on this paper