ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.11398
14
3

Fine-Grained Counting with Crowd-Sourced Supervision

23 May 2022
Justin Kay
C. Foley
T. Hart
ArXivPDFHTML
Abstract

Crowd-sourcing is an increasingly popular tool for image analysis in animal ecology. Computer vision methods that can utilize crowd-sourced annotations can help scale up analysis further. In this work we study the potential to do so on the challenging task of fine-grained counting. As opposed to the standard crowd counting task, fine-grained counting also involves classifying attributes of individuals in dense crowds. We introduce a new dataset from animal ecology to enable this study that contains 1.7M crowd-sourced annotations of 8 fine-grained classes. It is the largest available dataset for fine-grained counting and the first to enable the study of the task with crowd-sourced annotations. We introduce methods for generating aggregate "ground truths" from the collected annotations, as well as a counting method that can utilize the aggregate information. Our method improves results by 8% over a comparable baseline, indicating the potential for algorithms to learn fine-grained counting using crowd-sourced supervision.

View on arXiv
Comments on this paper