ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.11060
40
8

Wasserstein Generative Adversarial Networks for Online Test Generation for Cyber Physical Systems

23 May 2022
J. Peltomäki
Frankie Spencer
Ivan Porres
    GAN
ArXivPDFHTML
Abstract

We propose a novel online test generation algorithm WOGAN based on Wasserstein Generative Adversarial Networks. WOGAN is a general-purpose black-box test generator applicable to any system under test having a fitness function for determining failing tests. As a proof of concept, we evaluate WOGAN by generating roads such that a lane assistance system of a car fails to stay on the designated lane. We find that our algorithm has a competitive performance respect to previously published algorithms.

View on arXiv
Comments on this paper