49
0

Slowly Changing Adversarial Bandit Algorithms are Efficient for Discounted MDPs

Abstract

Reinforcement learning generalizes multi-armed bandit problems with additional difficulties of a longer planning horizon and unknown transition kernel. We explore a black-box reduction from discounted infinite-horizon tabular reinforcement learning to multi-armed bandits, where, specifically, an independent bandit learner is placed in each state. We show that, under ergodicity and fast mixing assumptions, any slowly changing adversarial bandit algorithm achieving optimal regret in the adversarial bandit setting can also attain optimal expected regret in infinite-horizon discounted Markov decision processes, with respect to the number of rounds TT. Furthermore, we examine our reduction using a specific instance of the exponential-weight algorithm.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.