ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.08659
53
8

Semantically Accurate Super-Resolution Generative Adversarial Networks

17 May 2022
Tristan Frizza
D. Dansereau
Nagita Mehr Seresht
M. Bewley
    GAN
ArXivPDFHTML
Abstract

This work addresses the problems of semantic segmentation and image super-resolution by jointly considering the performance of both in training a Generative Adversarial Network (GAN). We propose a novel architecture and domain-specific feature loss, allowing super-resolution to operate as a pre-processing step to increase the performance of downstream computer vision tasks, specifically semantic segmentation. We demonstrate this approach using Nearmap's aerial imagery dataset which covers hundreds of urban areas at 5-7 cm per pixel resolution. We show the proposed approach improves perceived image quality as well as quantitative segmentation accuracy across all prediction classes, yielding an average accuracy improvement of 11.8% and 108% at 4x and 32x super-resolution, compared with state-of-the art single-network methods. This work demonstrates that jointly considering image-based and task-specific losses can improve the performance of both, and advances the state-of-the-art in semantic-aware super-resolution of aerial imagery.

View on arXiv
Comments on this paper