ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.08176
19
0

On the Convergence of Policy in Unregularized Policy Mirror Descent

17 May 2022
Dachao Lin
Zhihua Zhang
ArXivPDFHTML
Abstract

In this short note, we give the convergence analysis of the policy in the recent famous policy mirror descent (PMD). We mainly consider the unregularized setting following [11] with generalized Bregman divergence. The difference is that we directly give the convergence rates of policy under generalized Bregman divergence. Our results are inspired by the convergence of value function in previous works and are an extension study of policy mirror descent. Though some results have already appeared in previous work, we further discover a large body of Bregman divergences could give finite-step convergence to an optimal policy, such as the classical Euclidean distance.

View on arXiv
Comments on this paper