ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.06993
11
7

Improving Neural Machine Translation of Indigenous Languages with Multilingual Transfer Learning

14 May 2022
Wei-Rui Chen
Muhammad Abdul-Mageed
ArXivPDFHTML
Abstract

Machine translation (MT) involving Indigenous languages, including those possibly endangered, is challenging due to lack of sufficient parallel data. We describe an approach exploiting bilingual and multilingual pretrained MT models in a transfer learning setting to translate from Spanish to ten South American Indigenous languages. Our models set new SOTA on five out of the ten language pairs we consider, even doubling performance on one of these five pairs. Unlike previous SOTA that perform data augmentation to enlarge the train sets, we retain the low-resource setting to test the effectiveness of our models under such a constraint. In spite of the rarity of linguistic information available about the Indigenous languages, we offer a number of quantitative and qualitative analyses (e.g., as to morphology, tokenization, and orthography) to contextualize our results.

View on arXiv
Comments on this paper