ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.06296
14
7

Integrating User and Item Reviews in Deep Cooperative Neural Networks for Movie Recommendation

12 May 2022
Aristeidis Karras
Christos N. Karras
    HAI
ArXivPDFHTML
Abstract

User evaluations include a significant quantity of information across online platforms. This information source has been neglected by the majority of existing recommendation systems, despite its potential to ease the sparsity issue and enhance the quality of suggestions. This work presents a deep model for concurrently learning item attributes and user behaviour from review text. Deep Cooperative Neural Network (DeepCoNN) is the suggested model consisting of two parallel neural networks connected in their final layers. One of the networks focuses on learning user behaviour from reviews submitted by the user, while the other network learns item attributes from user reviews. On top, a shared layer is added to connect these two networks. Similar to factorization machine approaches, the shared layer allows latent factors acquired for people and things to interact with each other. On a number of datasets, DeepCoNN surpasses all baseline recommendation systems, according to experimental findings.

View on arXiv
Comments on this paper