ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.05357
34
13

Beyond the Status Quo: A Contemporary Survey of Advances and Challenges in Audio Captioning

11 May 2022
Xuenan Xu
Zeyu Xie
Mengyue Wu
K. Yu
ArXivPDFHTML
Abstract

Automated audio captioning (AAC), a task that mimics human perception as well as innovatively links audio processing and natural language processing, has overseen much progress over the last few years. AAC requires recognizing contents such as the environment, sound events and the temporal relationships between sound events and describing these elements with a fluent sentence. Currently, an encoder-decoder-based deep learning framework is the standard approach to tackle this problem. Plenty of works have proposed novel network architectures and training schemes, including extra guidance, reinforcement learning, audio-text self-supervised learning and diverse or controllable captioning. Effective data augmentation techniques, especially based on large language models are explored. Benchmark datasets and AAC-oriented evaluation metrics also accelerate the improvement of this field. This paper situates itself as a comprehensive survey covering the comparison between AAC and its related tasks, the existing deep learning techniques, datasets, and the evaluation metrics in AAC, with insights provided to guide potential future research directions.

View on arXiv
Comments on this paper