ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.04692
18
26

Meta-Learning Based Knowledge Extrapolation for Knowledge Graphs in the Federated Setting

10 May 2022
Mingyang Chen
Wen Zhang
Zhen Yao
Xian-gan Chen
Mengxiao Ding
Fei Huang
Huajun Chen
    FedML
ArXivPDFHTML
Abstract

We study the knowledge extrapolation problem to embed new components (i.e., entities and relations) that come with emerging knowledge graphs (KGs) in the federated setting. In this problem, a model trained on an existing KG needs to embed an emerging KG with unseen entities and relations. To solve this problem, we introduce the meta-learning setting, where a set of tasks are sampled on the existing KG to mimic the link prediction task on the emerging KG. Based on sampled tasks, we meta-train a graph neural network framework that can construct features for unseen components based on structural information and output embeddings for them. Experimental results show that our proposed method can effectively embed unseen components and outperforms models that consider inductive settings for KGs and baselines that directly use conventional KG embedding methods.

View on arXiv
Comments on this paper